Journal of Organometallic Chemistry, 165 (1979) 209–214 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

A FLUOROALKOXY LIGAND IN ORGANOMETALLIC CHEMISTRY OF TITANIUM(IV): SYNTHESIS AND REACTIVITY OF SOME MONOCYCLOPENTADIENYL FLUOROALKOXY DERIVATIVES

M. BASSO BERT and D. GERVAIS

Laboratoire de Chimie de Coordination du C.N.R.S., B.P. 4142, 31030 Toulouse-Cedex (France)

(Received July 6th, 1978)

Summary

Monocyclopentadienyl derivatives of titanium(IV) containing the fluoroalkoxy group $OCH_2CF_3 = (OR_f)$ have been synthesized: $CpTi(OR_f)_3$ (I), $CpTiCl-(OR_f)_2$ (II) and $CpTi(CH_3)(OR_f)_2$ (III). Their IR and ¹H, ¹³C and ¹⁹F NMR spectra are reported and compared with those of related chloro and alkoxo compounds. Their reactions have been examined and (III) was found to be an efficient catalyst for the polymerization of methyl methacrylate.

Introduction

Interest in introducing new ligands in organometallic derivatives of titanium stems from the role of the chemical environment of the transition metal on its catalytic activity in polymerization of olefins. Among others, non-halogenated complexes are of special interest [1]. We report below the preparation and properties of some monocyclopentadienyl derivatives of titanium(IV) containing the fluoroethoxy group OCH_2CF_3 .

Results and discussion

The following equations depict the method used for the introduction of the fluoroalkoxy group ($OR_f = OCH_2CF_3$) and the methyl group into monocyclopentadienyl complexes of titanium(IV) starting from CpTiCl₃

 $CpTiCl_3 + 3 LiOR_f \xrightarrow{pentane} CpTi(OR_f)_3 (I) + 3 LiCl$

 $CpTiCl_3 + 2 LiOR_f \xrightarrow{pentane} CpTiCl(OR_f)_2$ (II) + 2 LiCl

 $CpTiCl(OR_f)_2$ (II) + LiCH₃ $\xrightarrow{\text{ether}}$ $CpTi(CH_3)(OR_f)_2$ (III) + LiCl

In the infrared spectra, assignments can be made by comparison with spectra of previously reported related complexes [2,3] (Table 1).

¹H, ¹³C and ¹⁹F NMR data for the new complexes are collected in Table 2, while in Table 3, ¹H and ¹³C chemical shifts of the methyl and cyclopentadienyl groups in (I), (II), and (III) are compared with published data for related derivatives. It is noteworthy that on introduction of the fluorinated alkoxy OR_f, resonances are shifted downfield with respect to the non fluorinated ligand OR (R = Et, i-Pr) and almost reach the values obtained for chlorinated derivatives.

The reactivity of the ligand OR_f in substitution and insertion reactions have been explored, and the following reactions were found to take place very readily:

Replacement of OR_f by Cl by the action of CH_3COCl

 $CpTi(OR_f)_3 + CH_3COCl \rightarrow CpTiCl(OR_f)_2 + CH_3COOR_f$

Insertion of phenylisocyanate giving urethane

 $CpTi(OR_f)_3 + PhNCO \rightarrow CpTi(OR_f)_2(N(Ph)COOR_f)$

More attention has been paid to the reactivity of the σ titanium—carbon bond of Ti—CH₃ in (III), since this type of bond is considered to play a predominant role in catalytic polymerization of olefins [6].

Displacement of CH_3 by halogens or OR_f was found to occur, as follows:

 $CpTi(CH_3)(OR_f)_2 + I_2 cryst \rightarrow CpTi(I)(OR_f)_2 + CH_3I$

 $CpTi(CH_3)(OR_f)_2 + 3 HCl gas \rightarrow CpTiCl_3 + CH_4 + 2 R_fOH$

 $CpTi(CH_3)(OR_f)_2 + R_fOH \rightarrow CpTi(OR_f)_3 + CH_4$

The polymerisation of methylmethacrylate in 40/1 ratio was found to take place at room temperature in presence of (I) and (III), giving a high polymer (molecular weight $\simeq 10^6$) soluble in common solvents [7].

TABLE 1

MAIN IR ABSORPTION BANDS OF CpTi(CH₃)X₂ AND CpTiX₃ (X = OCH(CH₃)₂, OCH₂CF₃) IN THE REGION 1100-400 cm⁻¹

CpTi(CH ₃) _{X2}		CpTiX ₃		CF ₃ CH ₂ OH	Assign-
x = OCH(CH ₃) ₂	X = OCH ₂ CF ₃	X = OCH(CH ₃) ₂	X = OCH ₂ CF ₃		
1020	1020	1022	1020		Cp ring
508	509				Ti-CH3
632-578	700-597	610-590	695-595		Ti—O
	957		957	945)	
	820		825	830	
	630		620	660 >	OCH ₂ CF ₂
	530		520	545	
	395		420	420	

210

TABLE 2

		CpTi(OR _f) ₃	CpTiCl(OR _f) ₂	CpTi(CH ₃)(OR _f) ₂	
		(1)	(11)	(111)	
1 ^H	δ(CH ₃)			0.82	
	(Int)			(3)	
	$\delta(CH_2CF_3)$	4.47	4.62	4.43	
	(Int)	(6.1)	(4.1)	(3.9)	
	δ(C <u>5H</u> 5)	6.45	6.62	6.24	
	(Int)	(5)	(5)	(5)	
19F	δ(CF3)	1.3		1.3	
	$({}^{3}J(\overline{CH}-C-F))$	(9.6)		(9.6)	
¹³ C	$\delta(CH_3)$			46.4	
	$(^{1}\overline{J(C-H)})$			(145)	
	$\delta(CH_2)$	74.2		73	
	$(^{1}\overline{J(C-H)})$	(146)		(146)	
	$(^{2}J(C-C-F))$	(35)		(34)	
	δ(CF3)	125		125	
	$(^{1}\overline{J(C-F)})$	(279)		(281)	
	δ(C5H5)	117.0		114.3	
	$(^{1}J(C-H))$	(175)		(172)	

¹H, ¹⁹F AND ¹³C NMR DATA OF COMPLEXES (I), (II), (III) ^a

^a δ in ppm downfield with respect to TMS for ¹H and ¹³C, CF₃CO₂H for ¹⁹F; J coupling constant in Hz; (Int) relative intensity of the peaks.

TABLE 3

¹H and ¹³C chemical shifts of C_5H_5 and CH_3 bonded to titanium in (i), (ii), (iii) and related complexes

Compound	δ(¹ H)		δ(¹³ C)		Ref.	
	δ(C <u>H</u> 3)	δ(C <u>5H</u> 5)	δ(<u>C</u> H ₃)	δ(<u>C</u> 5H5)		
CpTi(OR)3 ^a		6,22		112.3	4	
CpTiCl(OR), a		6.44		114.7	4	
CpTi(ORf)3		6.45		117.0		
CpTiCl(ORf)2 ^b		6.62				
CpTiCl ₃		7.05		123.1	4	
CpTi(CH ₃)(OR) ₂ ^C	0.47	6.02	35.0	111.5	2	
CpTi(CH ₃)(OR _f) ₂ ^b	0.82	6.24	46.4	114.3		
CpTi(CH ₃)Cl ₂	1.80	6.75			5	

^a $R = CH_2CH_3$. ^b $R_f = CH_2CF_3$. ^c $R = CH(CH_3)_2$.

Experimental

Infrared spectra were recorded on a Perkin–Elmer spectrophotometer (model 557) as neat liquids between KBr discs. ¹H NMR spectra were recorded on a Perkin–Elmer R 12 spectrophotometer using CCl₄ as solvent and TMS as internal standard. ¹³C NMR spectra were recorded on a Fourier transform spectrometer Bruker WH 90, using C_6D_6 solutions with TMS as internal standard. Molecular weight determinations were carried out cryoscopically in C_6H_6 . All experiments were carried out with exclusion of moisture and using dry solvents.

Preparation of LiOR_f

Upon treatment of neat R_fOH with commercial LiBu in hexane, at -80°C, butane is evolved and LiOR_f obtained as a white solid.

Preparation of $CpTi(OR_{f})_{3}(I)$

CpTiCl₃ (5.8 g, 26 mmol) in C₆H₆ solution is added dropwise to a C₆H₁₂ suspension of 79 mmol of LiOR₁, at -25° C. The mixture is stirred for 1 h and allowed to warm to room temperature. Lithium salt is filtered off, the solvent evaporated off, and the residual yellow liquid distilled, b.p. 72° C/ 10^{-2} mmHg. Yield: 70%, $M(\exp) = 410$, (calc) = 410. Anal.: Found: C, 33.0; H, 2.88; F, 39.5; Ti, 11.68. Calcd. for C₁₁H₁₁F₉O₃Ti: C, 32.2; H, 2.68; F, 41.7; Ti, 11.68%.

Preparation of $CpTiCl(OR_{f})_{2}$ (II)

The same procedure, using 15 mmol of $CpTiCl_3$ and 30 mmol of R_fOH , gives a yellow liquid, yield 90%.

Preparation of $CpTi(CH_3)(OR_f)_2$ (III)

(II) (5.2 g, 15 mmol) in diethyl ether is added to 15 mmol of LiCH₃ at -10° C. After 1 h stirring, the solution is allowed to warm to room temperature. Lithium salt is filtered off. After removal of the solvent, the residual yellow liquid is vacuum distilled, b.p. 63°C/0.02 mmHg. Yield: 70%, $M(\exp)$ 315, (calc) 326. Anal.: Found: C, 36.83; H, 3.80; F, 35.08; Ti, 15.0. Calcd. for C₁₀H₁₂F₆O₂Ti: C, 36.82; H, 3.68; F, 35.0; Ti, 14.7%.

Reaction of (I) with CH_3COCl

Acetyl chloride (0.5 g, 6.4 mmol) is added at room temperature to a solution of (I) in equimolecular ratio (2.6 g in 5 ml CCl₄). The ester CH₃CO(OR_f) and the solvent are evaporated off, and (II) is characterized by its NMR spectrum.

Reaction of (I) with C_6H_5NCO

Phenyl isocyanate (0.65 g, 5.45 mmol) in 5 ml of pentane is added to a solution of (I) in equimolecular ratio (2.22 g in 5 ml of pentane) at 0°C. After 2 h refluxing the solvent is removed and a viscous liquid obtained. In the IR spectrum, the characteristic band of free ligand ν (N=C=O) at 2260-2280 cm⁻¹ has disappeared and a new band at 1700 cm⁻¹, due to ν (C=O), is observed.

Reaction of (III) with I_2

Iodine crystals are added to a solution of (III) in CCl_4 directly in the NMR tube. A new peak immediately appears at 2.1 ppm corresponding to CH_3I . Four days are necessary for complete disappearance of the CH_3Ti peak (δ 0.82 ppm). The cyclopentadienyl resonance is shifted downfield (δ 6.45 ppm).

Reaction of (III) with HCl.

Gaseous HCl is slowly bubbled into 4 mmol of (III) in CCl₄ (5 ml). Evolution of gas is observed and crystals separate. Elimination of CH₃ (as methane) and formation of R_fOH (δ_{CH_2} 3.87 ppm, δ_{OH} 2.35 ppm) and CpTiCl₃ (δ_{Cp} 7.05 ppm) is confirmed by the NMR spectrum of the solution.

Fig. 1. ¹³C NMR spectra (at 22.625 MHz) of CpTi(CH₃)(OR_f)₂ (III) in C₆D₆, (a) non-gated (b) gated.

Reaction of (III) with CF_3CH_2OH

2,2,2-Trifluoroethanol (0.40 g, 4 mmol) in 1 ml of CCl_4 is added to a solution of (III) in equimolecular ratio (1.30 g in 5 ml of CCl_4) at room temperature. The formation of (I) with elimination of CH_4 is confirmed by the NMR spectrum.

Polymerisation of methylmethacrylate

Methylmethacrylate (2.8 g, 20 mmol) is added dropwise at room temperature to 0.17 g (0.5 mmol) of (III) in 40/1 ratio. After 12 h stirring a solid polymer is obtained (molecular weight M 1.19 × 10⁶, viscosity, η 2.16 dl/g, yield 100% towards monomer, soluble in common solvents). The same procedure is followed using (I) as catalyst; the polymerization takes place more slowly and is complete after 4 days (M 0.78 × 10⁶, η 1.56 dl/g). Further details of the IR and NMR data will be published later [7].

References

- 1 P.C. Wailes, R.S.P. Coutts and H. Weigold, Organometallic Chemistry of Titanium, Zirconium and Hafnium, Academic Press, New York, 1974, p. 7.
- 2 C. Blandy, R. Guerreiro and D. Gervais, J. Organometal. Chem., 128 (1977) 415.
- 3 A.N. Nesmeyanov, O.V. Nogina and V.A. Dubovitskii, Izv. Akad. Nauk. SSSR, Ser. Khim., (1967) 527.
- 4 A.N. Nesmeyanov, O.V. Nogina, E.I. Fedin, V.A. Dubovitskii, B.A. Kvasov and P.V. Petrovskii, Dokl. Akad. SSSR, 205 (1972) 857.
- 5 M. Basso Bert and D. Gervais, unpublished results.
- 6 Z. Cossee, J. Catal., 3 (1964) 80.
- 7 C. Blandy and D. Gervais, unpublished results.

214